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1. Introduction and Preliminaries

In [9] Rafael introduced the notation called proximally complete pair of subsets
of a metric space, which weakens the notion of UC property and cyclical
completeness introduced by Karpagam [5] in the theory of Best proximity
points. In [9] the authors also shown that every pair of non-empty closed
convex subsets of a uniformly convex banach space (or boundedly compact
subsets of a metric space) is proximally complete. In [8] the cyclical proximal

property says that if there exists xi € A;, for 1 <i < p such that x; = x;,,, for all
i=1,2, -, pwhenever || Xj — Xjy [=d (A, Aisg) .
For a pair of subsets (A, Aj;1),fori=0,1,... p-1, where Ap=Ag.

Let  ADy={yeAu1:d(x,y)=d(A, Ai) forsome xe A

and d(y,z)=d (A1, Ajy2) forsome z € Ao}
Definition 1.1
Let Ag, Al,...,Ap_l be a non-empty subsets of a metric space X.

Asequence %, r&qin UPo A, with

X1 € Al!---xpn € Ap, Xpn+l € Al---'xp(n+l)—l € Ap—l
for n>0, is said to be a cyclical Cauchy sequence iff for each pair (Aj, Aiz1)
and any £ >0 there exists an n> IN such that

d(kal.ka2+1)<d(Ai,Ai+1)+g for ki, ko >N .

Definition 1.2
The p-sets Ag, Ay,...,Ap_1 of metric space is proximally complete iff for every

cyclically Cauchy sequence %, }0 IS UP:_OI A; , the sequence x{pn ,}ﬁpml g

>€ _1 have convergent subsequences in Ay, Aq,...,Ap_1 respectively.
p(n+D)-1 . p-1

Definition 1.3

[6] Let (X, d) be a metric space and let A, Ay,...,Ap be non-empty subsets

of X. If T:UipzlAi —>Uip:1Ai is a p-cyclic non-expansive maping, then

d(Ai ) Ai+l) = d(Ai+1, Ai+2) =.. Zd(Al, A2) fori=1,2,.,p.
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Definition 1.4

[8] The non-empty subsets Al,AZ,...,Ap of a metric space X said to satisfy
cyclical proximal property if there exists X; € Aj for all 1<i< p such that
Xj =X p foralli=1,2,..,p whenever || Xj —Xj1 [=d (A, Ajy1) .

Lemma 1.5
[1] Let A be a non-empty closed and convex subset and B a non-empty and
closed subset of a uniformly convex Banach space. Let {X,} and {z,} be

sequence in A and {Y,,} be a sequence in B satisfying.
i) lzn—Yynl—d(AB);
ii) For every £>0 there exists Ng& NN such that for all m>n>Ng,

| Xm — Yn II< d(A,B) + ¢ . Then for every £>0, there exists N; such that
| Xm —zn |l < & forall m>n=>=Nj.

Definition 1.6
[7] Let A and B be non-empty subsets of a metric space X. (A,B) is said to
satisfy property UC iff whenever {x,}and {z,} are sequences in A and {y,}is

a sequence in B such that lim,_, d(X,,yq)=d(AB) and
lim,_. d(z,,Y,) = d(A B), then lim,_,, d(x,,2,)=0.

Lemma 1.7
Every cyclical Cauchy sequence is bounded.

Proof

Let % }0 be a cyclical Cauchy sequence in Ui'D:—O1 A; . Therefore, there
exists N &£ N such that

d(Xpn,XpN+1) < d(A| , Ai+l)+1’ forall n>IN.
Therefore, Xpp € B(Xpnyg,F)forall n> N, where
I =max Gﬂ(Xp,XpNﬂ), d(X2p, XpN41)r---d(XpNs XpNaa), A (A Apg) +1
Then d(Xpn, Xpns1) <T for ne N.

Which implies X, is bounded.

Similarly >€pn+1 Jﬁpmz ] )ép(nﬂ)_l ;are also bounded.
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2. Main Results
Theorem 2.1
Let @, A;1 _be a proximally complete pair in a metric space X. Therefore

Aio is non-empty iff there exists a cyclical Cauchy sequence in Uf:_ol AL
Proof
Let & be a cyclical cauchy sequence: then there exist Apnk 3 )épmk-p]_ ,
ﬁpikJrg ,j.., de( jk+1)-1 convergent subsequences of ﬁpn : >€pn+1 ,
Rone2 + o Xip(nﬂ)—l ~converging t0  Xg € Ag, X €A, Xp €Ay,
Xp1 € Ap_l respectively. Hence
d(Ag. Ay) <d(Xg, Xq) = limy o, d(Xpny, X pmy +1) = d (Ao, Ay)
and
d(Ag, Ag) <d(xq, X2) =limy s d(Xpmy 11, X piy +2) = d (A1, Ap)
Therefore X; € AlO .

Similarly x; € Al foralli=0, 1,..., p-1.

Theorem 2.2
Let Ag, Ar,...,Ap_1 be subsets of a metric space X. If (Aj, Aj;1) is proximally

complete, then Aio, i=01,..., p—1 are closed subsets of X.

Proof

Let X5 € Aysuch that X5 —xe X , X4 € A, X € Ag, xPH e Ay

such that

d0xn,xh) =d(Ay, A), d(xf,33) = d(Ag, Ag)...., d (X xP) = d (Ap 1, Ao)
For ne N,

xlm,forn: pm+1
2
yp = :xm,forn:pm+2

xP, forn=pm
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Then

d(Ypn: Ypmer) = 4 04F x)

<d(xt, x) +d(xxE)+d (e, xP)

which tends to d(Ag, Ay) and

d(Y pnets Y pme2) =405, X7)

1 1 1 .2
<d(Xp, X) +d(X, X)) +d(Xm s Xfy)

which tends to d (A, Ay),as m,n —> oo,

Hence 3§, is a cyclical Cauchy sequence. Since (A, A1) is proximally

complete, x% } }ﬁ? ] ﬁ?‘l _ )%? “have convergent subsequences which

converges to X; € Ay,...,Xpg € Ap_1, Xp € Ap respectively.
Hence X=X;, so d(xg,X)=d(Ag,A;) and d(x,Xp)=d(A,Ay) which
implies AlO is closed. Similarly Aio fori=0,1,..,p areclosed.

Theorem 2.3

Any non empty, closed and convex pair (A, Aj;1) in a uniformly convex
Banach space is proximally complete. Furthermore, for any cyclical Cauchy
sequence {Xp}, sequences {Xpn}, {Xpni1} Xpne2ds - {Xpns1)-1} converges
to Xg, X1, X2, Xp_1 respectively, with d(Xg,X;) =d(Xg,Xp) =d(Xp,X3) = ...

= d(xp—laxp)=d(AivAi+1)-
Proof

Let {x,}be a cyclical Cauchy sequence in Uf:_ol A; . Suppose {Xpn}is not a
Cauchy sequence. Therefore, there exists €9 >0 and subsequences {xpnk}

and {X pmi 3 of {X p}such that d(Xpny + Xpmy ) Z Epforall k e N

One can also observe that

0 (Xpm +Xpyc2) = A(Ag, Ar) and d(Xpmy Xy 1) > (Ao, Ar) as k —> oo,
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Recalling Lemma 1.5, we reach the contradiction that there exist N; € IN such
that d(xpnk ,Xpmk ) <é&q forall k > 1N.

Hence {Xpn}converges to a point Xg € Ag.

Similarly Xpn+1 —> X1 € Al:Xpn+2 —> X € AZ'---’Xp(n+1)—1 —)Xp_l € Ap—l

and that
d(Xg, %) =liMp_soo d(Xpn, Xpne1) =d(Ag, Ar);

d(Xq, X2) =limp_,o, d(Xpni1s Xpne2) =d (A, Ap);

d(Xp, Xp_1) =M p_oc d(Xpn, Xp(ns1)-1) =d(Ag, Apq)-
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